本书的论点是,我们以及其他一切动物都是我们自己的基因所创造的机器。在一个高度竞争性的世界上,像芝加哥发迹的强盗一样,我们的基因生存了下来,有的长达几百万年。这使我们有理由在我们的基因中发现某些特性。我将要论证,成功的基因的一个突出特性是其无情的自私性。这种基因的自私性通常会导致个体行为的自私性。然而我们也会看到,基因为了更有效地达到其自私的目的,在某些特殊情况下,也会滋长一种有限的利他主义。上面一句话中,"特殊"和"有限"是两个重要的词儿。尽管我们对这种情况可能觉得难以置信,但对整个物种来说,普遍的爱和普遍的利益在进化论上简直是毫无意义的概念。

我不准备以讲故事的方式来阐明一个论点。经过选择的例子对于任何有价值的概括从来就不是重要的证据。

我们血液中的血红蛋白就是典型的蛋白质分子。它是由较小的分子氨基酸链所组成,每个分子包含几十个排列精确的原子。在血红蛋白分子里有574个氨基酸分子。它们排列成四条互相缠绕在一起的链,形成一个立体球形,其结构之错综复杂实在使人眼花镣乱。

总的说来,进化在某种含糊的意义上似乎是件"好事",尤其是因为人类是进化的产物,而事实上没有什么东西"想要"进化。进化是偶然发生的,不管你愿意不愿意,尽管复制基因(以及当今的基因)不遗余力地防止这种情况的发生。

但在某种意义上说,它们的确是在进行生死存亡的斗争,因为任何导致产生更高一级稳定性的复制错误,或以新方法削弱对手的稳定性的复制错误,都会自动地得以延续下来并成倍地增长。改良的过程是积累性的。加强自身的稳定性或削弱对手的稳定性的方法变得更巧妙,更富有成效。

复制基因的出现不仅仅是为了生存,而且是为它们自己制造容器,即赖以生存的运载工具。能够生存下来的复制基因都是那些为自己构造了生存机器以安居其中的复制基因。最原始的生存机器也许仅仅是一层保护衣。

经过四十亿年,古代的复制基因又会有什么样的命运呢?它们没有消失,因为它们是掌握生存艺术的老手。但在今日,别以为它们还会浮游于海洋之中了。很久以前,它们已经放弃了这种自由自在的生活方式了。在今天,它们群集相处,安稳地寄居在庞大的步履蹒跚的"机器"人体内,与外界隔开来,通过迂回曲折的间接途径与外部世界联系,并通过遥控操纵外部世界。它们存在于你和我的躯体内;它们创造了我们,创造了我们的肉体和心灵;而保存它们正是我们存在的终极理由。这些复制基因源远流长。今天,我们称它们为基因,而我们就是它们的生存机器。

一个DNA分子是一条由构件组成的长链,这些构件即称为核苷酸的小分子。就同蛋白质分子是氨基酸链一样,DNA分子是核苷酸链。DNA分子大小不能为肉眼所见,但它的确切形状已用间接的方法巧妙地揭示了出来。它由一对核苷酸链组成,两条链相互交织,呈雅致的螺旋形;这就是"双螺旋"或"不朽的螺旋圈"。核苷酸构件仅有四种,可以把它们简称为A,T,C和G。在所有动物和植物中这四种都是一样的,所不同的是它们缠绕交织在一起的顺序不一样。人类的G构件同蜗牛的G构件完全相同。但人类构件的序列不仅同蜗牛的不同,而且人类不同个体之间的序列也不相同,虽然在差别程度上略小一些(同卵双胞胎的特殊情况除外)

DNA分子做的两件重要事情是:第一,它们进行复制,就是说进行自身复制。自有生命以来,这样的复制活动就从未中断过。

DNA 做的第二件重要事情。它间接地监督制造了种不同种类的分子--蛋白质。

基因控制胚胎发育这一事实在进化上的重要意义在于:它意味着基因对其自身的今后生存至少要负部分责任,因为它们的生存要取决于它们寄居其中并帮助建造的人体的效能。

建造一个人体的蓝图是用46卷写成的。事实上,这是一种过分简单化随讲法。真实情况是相当离奇的。46条染色体由23对染色体构成。

我已经叙述了一个细胞分裂为两个新细胞的正常分裂情况。每个分裂出来的细胞都接受了所有46条染色体的一份完整拷贝。这种正常的细胞分裂称为有丝分裂。但还有一种细胞分裂叫作减数分裂。减数分裂只发生在性细胞即精子和卵子的产生过程中。精子和卵子在我们的细胞中有其独特的一面,那就是它们只有23条,而不是46条染色体。这个数字当然恰巧是46的一半。这对它们受精或授精之后融合在一起以便制造一个新个体是何等的方便!减数分裂是一种特殊类型的细胞分裂,只发生在精巢和卵巢中。在这个过程中,一个具有完整的双倍共46条染色体的细胞,分裂成只有单倍共23条染色体的性细胞(皆以人体的染色体数目为例)。

我下的定义不会适合每个人的口味,但对于基因又没有一个普遍接受的定义。即使有,定义也不是神圣不可侵犯的东西。如果我们的定义下得既明确而又不模棱两可,按我们喜欢的方式给一个词下一个适用于我们自己的目的的定义也未尝不可。
基因的定义是:染色体物质的任何一部分,它能够作为一个自然选择的单位连续若干代起作用。

这方面最好的一个例子涉及称为拟态(mimicry)的现象。某些蝴蝶有一种令人厌恶的怪味,它们的色彩通常是鲜艳夺目,华丽异常。鸟类就是借它们这种"警戒性"的标志学会躲避它们的。于是一些并无这种令人厌恶怪味的其他种蝴蝶就乘机利用这种现象。它们模拟那些味道怪异的蝴蝶。于是它们生下来就具有和那些味道怪异的蝴蝶差不多的颜色和形状,但味道不同。它们时常使人类的博物学家上当,也时常使鸟类上当。一只鸟如果吃过真正有怪异味道的蝴蝶,通常就要避开所有看上去一样的蝴蝶,模拟者也包括在内。因此自然选择有利于能促进拟态行为的基因。拟态就是这样进化来的。

基因是不朽的,或者更确切地说,它们被描绘为接近于值得赋予不朽称号的遗传实体。我们作为在这个世界上的个体生存机器,期望能够多活几十年,但世界上的基因可望生存的时间,不是几十年,而是以千百万年计算。

那么我们只要直截了当的把"基因"解释为一个至少有可能拥有上述三种特性的最大的实体。基因是一个长久生存的复制基因,它以许多重复拷贝的形式存在着。它并非无限期地生存下去。

最好不要把自然选择的基本单位看作是物种,或者是种群,甚至是个体;最好把它看作是遗传物质的某种小单位。为方便起见,我们把它简称为基因。

脑子对生存机器做出实际贡献的主要方式在于控制和协调肌肉的收缩。
但为了在各种外界事件发生的时间与肌肉收缩的时间之间建立更复杂的和间接的联系,那就需要有某种形式的脑子作为媒介物。

但生命和棋局一样是变幻莫测的,事先预见到一切是不现实的。像棋局的程序编制员一样,基因对生存机器的"指令"不可能是具体而细微的,它只能是一般的战略以及适用于生计的各种诀窍。

计算机的电脑实际上如何容纳它这个世界的模型是无关紧要的。重要的是容纳的形式允许它操纵这个模型,进行操作和试验,并以计算机操作员能够理解的语言汇报运算的结果。

那些能够模拟未来事物的生存机器,比只会在明显的试验和误差的基础上积累经验的生存机器要棋高一着。问题是明显的试验既费时又费精力,明显的误差常常带来致命的后果。模拟则既安全又迅速。

我们可以这样说,一个生存机器对另一个生存机器的行为或其神经系统的状态施加影响的时候,前者就是在和后者进行联络

实际的情况很可能是:从一开始,一切的动物联络行为就含有某种欺诈的成分,因为所有的动物在相互交往时至少要牵涉到某种利害冲突。

所以,甚至在人类这一具有天赋的自觉预见能力的物种中,以最高的长远利益为基础的盟约或集团,由于内部出现的叛逆而摇摇欲坠,经常有土崩瓦解的可能。在野生动物中,由于它们为竞争的基因所控制,群体利益或集团策略能够得以发展的情形就更少见。我们所能见到的情况必然是:进化上的稳定策略无处不在。

当然,鹰同鸽子的故事简单得有点幼稚。这是一种“模式”,虽然这种情况在自然界实际上不会发生,但它可以帮助我们去理解自然界实际发生的情况。模式可以非常简单,如我们所假设的模式,但对理解一种论点或得出一种概念仍旧是有助益的。简单的模式能够加以丰富扩展,使之逐渐形成更加复杂的模式。如果一切顺利的话,随着模式渐趋复杂,它们也会变得更像实际世界。

个体的大多数一旦运用这两种有条件的策略的某一种,所有脱离群众的行为皆受到惩罚,这种策略就因之称为ESS。

基因被选择,不是因为它在孤立状态下的“好”,而是由于在基因库中的其他基因这一背景下工作得好。好的基因应能够和它必须与之长期共同生活于一系列个体内的其余基因和谐共存,相互补充。

基因是根据其“成绩”被选择的,但对成绩的判断是以基因在一组进化上稳定的基因(即现存基因库)的背景下的表现为基础的。

完整的浑然一体的躯体之所以存在,正是因为它们是一组进化上稳定的自私基因的产物。

如果一个个体为了拯救十个近亲而牺牲,操纵个体对亲属表现利他行为的基因可能因此失去一个拷贝,但同一基因的大量拷贝却得到保存。

至于远如第三代堂兄弟或姐妹的亲缘关系[2×(1/2)^8=1/128],那就要接近于最低的概率,即相当于种群中任何一个个体拥有A体内某个基因的可能性。就一个利他基因而言,一个第三代的堂兄弟姐妹的亲缘关系和一个素昧平生的人差不多。一个第二代的堂兄弟姐妹(亲缘关系1/32)稍微特殊一点,第一代堂兄弟姐妹更为特殊一点(1/8),同胞兄弟姐妹、父母和子女十分特殊(1/2),同卵孪生兄弟姐妹(1)就和自己完全一样。叔伯父和叔伯母、侄子或外甥和侄女或外甥女、祖父母和孙子孙女,异父或异母兄弟和异父或异母姐妹的亲缘关系是1/4。

但动物并非生活在理想的环境里,我们不能指望真正的动物在做出最适宜的决定时考虑到每一个具体细节。我们必须在自然界里通过观察和试验去发现,真正的动物在进行有关得失的分析时,能够在多大的程度上接近理想的境界。

海鸠平均每次孵一卵,这意味着一个集体照管小鸟的集团如果要顺利发展,那么每一只成年的海鸠都必须平均孵一只蛋。假使其中一只弄虚作假,不肯孵它那只蛋,它可以把原来要花在孵蛋上的时间用于生更多的蛋,这种办法的妙处在于,其他比较倾向于利他行为的海鸠自然会代它照管它的蛋。利他行为者会忠实地继续遵循这条准则:“如果在你的鸟窝附近发现其他鸟蛋,把它拖回来并坐在上面。”这样,欺骗基因得以在种群中兴旺起来,而那些助人为乐的代管小鸟的集团最终要解体。

正如我在上面曾强调指出的那样,估计寿命是个重要的变量。在最最理想的环境里,一只动物在“演算”时应考虑这个变量,以“决定”是否需要表现出利他行为。

拉克认为,个体之所以调节其每窝的孵卵数,绝非出自利他性的动机。它们不会为了避免过多地消耗群体的资源而实行节制生育。它们节制生育是为了最大限度地增加它们现有子女的存活数,它们的目标同我们提倡节制生育的本来目标恰好背道而驰。

生育太多子女的个体要受到惩罚,不是由于整个种群要走向灭绝,而是仅仅由于它们自己的子女能存活下来的越来越少。使之生育太多子女的基因根本不会大量地传递给下一代,因为带有这种基因的幼儿极少能活到成年。

一般地说,雌欧掠鸟知道,它在来年春季终于要喂养自己的雏鸟时,将要和同一物种的对手竞争食物。如果它能够在冬季以某种方式估计出自己物种在当地的密度的话,那么它就具备了有力的手段,能够预言明年春天为雏鸟搜集食物的困难程度。假如它发现冬天的个体密度特别高的话,出于自私的观点,它很可能采取慎审的政策,生的蛋会相对减少:它对自己的每窝最适量的估计会随之降低。

我们根据本章得出的结论是,亲代个体实行计划生育,为的是使它们的出生率保持在最适度……。

亲代投资(P.I)的定义是:"亲代对子代个体进行的任何形式的投资,从而增加了该个体生存的机会(因而得以成功地繁殖),但以牺牲亲代对子代其他个体进行投资的能力为代价。

做母亲的可以根据具体情况做出决定,它可能发现,拒绝饲养一个个子矮小、发育不良的幼畜,将其名下应得的一份亲代投资全部分给它的兄弟姐妹反而来得合算。事实上做母亲的有时干脆把它丢给其他幼畜作为食料,或自己把它吃掉作为制造奶汁的原料,这样也许上算。母猪有时吞食小猪,但它是否专挑小个子的吃,我却不得而知。

一旦小个子瘦弱得使其估计寿命缩短,而且缩短到这样的程度,以致它从同样数量的亲代投资中获得的利益还不到其他幼儿的一半,这时它也就该体面而心甘情愿地死去。

从母鸟的观点来看,这说明了小个子现象存在的理由。小个子的生命就是母鸟打赌的赌注,母鸟的这种打赌行为在许多鸟类中很普遍,其性质和交易所里那种买现卖期的策略一样。

尽管幼儿幼小赢弱,无力欺负其父母,但它却不惜使用一切可能使用的心理战术武器:说谎、哄骗、欺瞒、利用,甚至滥用亲缘关系做出不利于其亲属的行为。

用基因语言来说,操纵杀兄弟姐妹行为的基因在基因库中是会扩散开来的,因为它有百分之一百的机会存在于表现这种行为的个体内,而存在于它的受害者体内的机会只有百分之五十。

对一个幼体来说,只要它从自私行为中得到的净利益至少不小于它的近亲因此受到的净损失的一半,那么,这种自私行为还是合算的。

特里弗斯特别强调指出,性配偶之间的关系是一种相互不信任和相互利用的关系。这种关于性配偶之间的相互关系的观点,对个体生态学家来说,是一种比较新的观点。我们过去通常认为,性行为、交配以及在此之前的追求行为,主要是为了共同的利益,或者甚至是为了物种的利益而相互合作共同进行的冒险事业

然而性别有一个基本特性,可以据以标明一切动物和植物的雄性和雌性。这就是雄性的性细胞或"配子" (gametes)比雌性配子要小得多,数量也多得多。不论我们讨论的是动物还是植物,情况都是如此。

为简便起见,我以钟摆的摆动来说明问题。实际上,钟摆绝不会向雌性占绝对优势的方向摆动那样大的幅度。因为性比率一旦出现不平衡,生儿子的这股自然选择压力就会开始把钟摆推回去。生育同等数目的儿女的策略,是一种进化上的稳定策略,就是说,凡偏离这一策略的基因就要遭受净损失。

许多种类的鱼是不交尾的,它们只是把性细胞射到水里。受精就在广阔的水域里进行,而不是在一方配偶的体内。有性生殖也许就是这样开始的。另一方面,生活在陆地上的动物如鸟类、哺乳动物和爬虫等却无法进行这种体外受精,因为它们的性细胞容易干燥致死。一种性别的配子--雄性个体的,因为其精子是可以流动的--被引入另一种性别个体--雌性个体--的湿润的内部。

这个理论很难使我信服,尽管我所持的怀疑态度已不像我当初听到这个论点时那么坚决

我们看到,在动物界中各种不同的繁殖制度--雌&雄、雌雄乱交、"妻妾"等等--都可以理解为雌雄两性间利害冲突所造成的现象。雌雄两性的个体都"想要"在其一生中最大限度地增加它们的全部繁殖成果。

一个雄性个体如果失去了它的不朽的基因,那它即使占有了整个世界又将怎么样呢?

不同物种成员之间的互利关系叫做共生现象。不同物种的成员往往能相互提供许多帮助,因为它们可以利用各自不同的"技能"为合作关系做出贡献

我们体内的每个细胞里有许多称为线粒体的微粒。这些线粒体是化学工厂,负责提供我们所需的大部分能量。如果没有了线粒体,要不了几秒钟我们就要死亡。最近有人提出这样的观点,认为线粒体原来是共生微生物,在进化的早期同我们这种类型的细胞就结合在一起。

一般地说,如果各方从联系关系中获得的东西比付出的东西多,这种互利的联系关系是能够进化的。

那么基因到底有什么地方是如此异乎寻常的?我们说,它们是复制基因。在人类可及的宇宙里,物理定律应该是无处不适用的。有没有这样一些生物学的原理,它们可能也具有相似的普遍适用的性质?当宇航员飞到遥远的星球去寻找生命时,他们可能发现一些我们难以想象的令人毛骨悚然的怪物。但在一切形式的生命中--不管这些生命出现在哪里,也不管这些生命的化学基础是什么--有没有任何物质是共同一致的?如果说以硅而不是以碳,或以氨而不是以水,为其化学基础的生命形式存在的话,如果说发现一些生物在零下100℃就烫死,如果说发现一种生命形式完全没有化学结构而只有一些电子混响电路的话,那么,还有没有对一切形式的生命普遍适用的原则?显而易见,我是不知道的。不过,如果非要我打赌不可的话,我会将赌注押在这样一条基本原则上,即一切生命都通过复制实体的差别性生存而进化的定律。基因,即DNA分子,正好就是我们这个星球上普遍存在的复制实体。也可能还有其他实体。如果有的话,只要符合某些其他条件,它们几乎不可避免地要成为一种进化过程的基础。

调子、概念、妙句、时装、制锅或建造拱廊的方式等都是觅母。正如基因通过精子或卵子从一个个体转到另一个个体,从而在基因库中进行繁殖一样,觅母通过从广义上说可以称为模仿的过程从一个脑子转到另一个脑子,从而在觅母库中进行繁殖。

和基因的情况一样,对某些具体的拷贝而言,生殖力比长寿重要得多。如果说觅母这个概念是一个科学概念,那么它的传播将取决于它在一群科学家中受到多大的欢迎。它的生存价值可以根据它在连续几年的科技刊物中出现的次数来估算。如果它是一个大众喜爱的调子,我们可以从街上用口哨吹这个调子的行人的多寡来估算这个调子在觅母库中扩散的程度。如果它是女鞋式样,我们可以根据鞋店的销售数字来估计。有些觅母和一些基因一样,在觅母库中只能在短期内迅猛地扩散,但不能持久。流行歌曲和高跟鞋就属这种类型。其他如犹太人的宗教律法等可以流传几千年,历久不衰,这通常是由于见诸文字记载的东西拥有巨大的潜在永久性。

我们是作为基因机器而存在的,我们与生俱来的任务就是把我们的基因一代一代地传下去。但我们在这个方面的功绩隔了三代就被人忘怀。你的儿女,甚至你的孙子或孙女可能和你相像,也许在脸部特征方面,在音乐才能方面,在头发的颜色方面等等。但每过一代,你传给后代的基因要减少一半。这样下去,不消多久,它们所占的比例会越来越小,直至达到无足轻重的程度

但如果你能为世界文明做出贡献,如果你有一个精辟的见解或作了一个曲子,发明了一个火花塞,写了一首诗,所有这些都能完整无损地流传下去。即使你的基因在共有的基因库里全部分解后,这些东西仍能长久存在,永不湮灭。苏格拉底在今天的世界上可能还有一两个活着的基因,也可能早就没有了,但正如威廉斯所说的,谁对此感到兴趣呢?苏格拉底、莱奥纳多、哥白尼、马可尼等人的觅母复合体在今天仍盛行于世,历久而弥坚。

我要说明的一点是,即使我们着眼于阴暗面而假定人基本上是自私的,我们的自觉的预见能力--我们在想象中模拟未来的能力--能够防止我们纵容盲目的复制基因而干出那些最坏的、过分的自私行为。我们至少已经具备了精神上的力量去照顾我们的长期自私利益而不仅仅是短期自私利益。

我们具备足够的力量去抗拒我们那些与生俱来的自私基因。在必要时,我们也可以抗拒那些灌输到我们脑子里的自私觅母。我们甚至可以讨论如何审慎地培植纯粹的、无私的利他主义--这种利他主义在自然界里是没有立足之地的,在世界整个历史上也是前所未有的。我们是作为基因机器而被建造的,是作为觅母机器而被培养的,但我们具备足够的力量去反对我们的缔造者。在这个世界上,只有我们,我们人类,能够反抗自私的复制基因的暴政。